Mean Curvature Flows of Lagrangian Submanifolds with Convex Potentials

نویسنده

  • Mu-Tao Wang
چکیده

This article studies the mean curvature flow of Lagrangian submanifolds. In particular, we prove the following global existence and convergence theorem: if the potential function of a Lagrangian graph in T 2n is convex, then the flow exists for all time and converges smoothly to a flat Lagrangian submanifold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maslov Class Rigidity for Lagrangian Submanifolds via Hofer’s Geometry

In this work, we establish new rigidity results for the Maslov class of Lagrangian submanifolds in large classes of closed and convex symplectic manifolds. Our main result establishes upper bounds for the minimal Maslov number of displaceable Lagrangian submanifolds which are product manifolds whose factors each admit a metric of negative sectional curvature. Such Lagrangian submanifolds exist ...

متن کامل

Gauss Maps of the Mean Curvature Flow

Let F : Σ n × [0, T) → R n+m be a family of compact immersed submanifolds moving by their mean curvature vectors. We show the Gauss maps γ : (Σ n , g t) → G(n, m) form a harmonic heat flow with respect to the time-dependent induced metric g t. This provides a more systematic approach to investigating higher codimension mean curvature flows. A direct consequence is any convex function on G(n, m)...

متن کامل

Brian White - Mean Curvature Flow (math 258) Lecture Notes Notes by Otis Chodosh

1. Overview 2 1.1. Curve shortening flow 2 1.2. Flow of hypersurfaces 5 1.3. Mean convex surfaces 6 2. The maximum principle 7 3. Unparameterized mean curvature flow 8 3.1. Graphs 8 4. Short-time existence and smoothing 9 5. Long term behavior of mean curvature flow 9 6. Renormalized mean curvature flow 11 7. The level set approach to weak limits 13 8. Weak compactness of submanifolds 16 8.1. E...

متن کامل

RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM

Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...

متن کامل

Se p 20 02 Gauss Maps of the Mean Curvature Flow

Let F : Σ n × [0, T) → R n+m be a family of compact immersed sub-manifolds moving by their mean curvature vector. We show the Gauss maps γ : (Σ n , g t) → G(n, m) form a harmonic heat flow with respect to the time-dependent induced metric g t. This provides a more systematic approach to investigate higher codimension mean curvature flows. A direct consequence is any convex function on G(n, m) p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008